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We describe a Gedankenexperiment in which a bare proton can capture an electron due solely to confinement. We first
briefly review orbital electron capture and related processes. We then describe the Fermi VA theory and how it can
be applied to compute the cross section and rate using the full relativisitic Kinematics. We set the problem up as a
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I. BACKGROUND

As a student, we learn that the nucleus can not contain an
electron; this is a simple application of the Heisenberg Uncer-
tainty Principle1. If an electron were confined to the volume of
a nuclear radius, it would have a (relativisitic) kinetic energy
of order 10 MeV . But this is not observed experimentally. In
Beta (β−) decay, a nucleus emits an electron with energy of
order 1 MeV:

β− decay : n0 → p+ + e− + ν̄e

We can describe Beta decay using the Fermi VA theory
for the Weak Interaction, which assumes a phenomenological
contact force with no range.

A related Weak process is orbital electron capture, where
a nucleus captures a bound, low lying electron, creating in a
neutron and an electron neutrino.

Electron capture : p+ + e− → n0 + νe

Orbital electron capture (E.C.) is a fundamental nuclear
process, on pair with the more familiar Beta decay and
positron production. It is, however, usually treated as an af-
terthought to Beta decay, and there are no modern reviews of
how to treat the the problem numerically. Indeed, the most
complete reference date back to the 1960s and 70s2,3. Still,
electron capture displays its own unique, rich structure and
subtlety. For example, the rate is effected by the chemical en-
vironment by nearly 1%. This is because the rate depends on
the electronic density at the nucleus (i.e. |Ψe(r → 0)|2) since
the interaction has no range.
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But if we apply the Heisenberg Uncertainty Principle for
electron capture, we would find the electron can still be cap-
tured even if it is confined to a volume 100X the nuclear ra-
dius.

E.C. can also emit Bremsstrahlung radiation. This is actu-
ally discussed in Jackson with a classical model4, although it
is more properly treated using QED corrections to the Weak
Interaction5. Technically, electron capture is a 2-body, rela-
tivistic bound state problem, although we model it by com-
puting the non-relativistic atomic electronic wavefunctions of
the parent and daughter nuclei. We then use the wavefun-
tions to evaluate the matrix elements of the Weak Interaction
Hamiltonian using the Fermi-VA theory. Very rarely is there
a complete treatment of the relativistic Kinematics.

We are interested in reviewing the basic electron capture
process to understand how to apply the Fermi-VA theory to
compute the cross section and capture rate as completely as
possible. We will examine electron capture in its simplest
form: a bare proton capturing an electron while confined in
a classical box. We don’t believe this has been discussed else-
where and would serve as a basis for more extensive calcula-
tions.

We begin by briefly reviewing both orbital electron capture
and, then, the Fermi VA Theory.

A. Orbital Electron Capture

In 1935, Yukawa proposed that a proton, bound in an
atomic nucleus, could capture a low lying, bound atomic elec-
tron, transforming into a neutron, and releasing an electron
neutrino:

p+ + e− → n0 + νe

This may be called orbital electron capture, K-electron cap-
ture, or just electron capture (E.C.)

Note that unlike Beta decay, which is a 1 body decay, and
the resulting electron has a wide energy spectrum, E.C. is a
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FIG. 1. orbital electron capture relaxation processes

2 body reaction. Electron capture usually occurs in unstable
radioisotopes and decay by one of the three Beta decay pro-
cesses (β−, β+). The typical Q (binding) energies necessary
are

Qβ+ ∼ 2 − 4MeV

Qβ− ∼ 0.5 − 2(MeV)

QE.C. ∼ 0.2 − 2.0MeV

When Q < 1.02MeV , twice the rest mass of an electron
(2mec2), a proton rich nucleus must decay by electron capture.

In particular, heavy elements may decay by E.C. and/or β+

(positron emission) to a lower ’magic number’ of stable nu-
clei, or by β− decay to achieve a higher magic number. E.C.
is favored for high Z nuclei, but because of the energetic con-
straint, very light elements, such as 7Be, decay by primarily
by E.C.

Note that lacking any binding energy and/or internal nu-
cleon structure, bare proton electron capture is not readily ob-
served, and requires extreme, exotic conditions such as strong
confinement.

1. Experimental Evidence

We observe electron capture by observing the resulting
transmuted nuclei and/or the radiative relaxation processes.
The captured electron is bound to the atom, and it is usually a
K-shell electron, but may be L or higher. During this, another
higher lying, bound atomic electron is absorbed, releasing an
X-ray or Auger electron [see Figure 1]. If the nucleus is in an
excited state, it may also undergo internal conversion.

Because electron capture occurs in proton-rich nuclei, and,
subsequently, releases a X-ray photon, the reaction is also
sometimes written as

Z XA + e− → Z−1XA + hνX−ray

(where A is the total number of protons and neutrons, Z the
number protons, and hνX−ray is an X-ray photon)

Indeed, orbital electron capture is evidenced by high inten-
sity X-rays and soft electrons. In 1938, Alvarez observed
the X-ray signature of orbital electron capture in activated
Titanium6. Since then, electron capture has been observed
in about 150 radioactive isotopes.

2. Experimental Enhancement of the Capture Rate

The E.C. rate

ΓEC =
∣∣∣Ψe(0)

∣∣∣2 ∫
dLIPS

∣∣∣M∣∣∣2
is proportional to the atomic electron density

∣∣∣Ψe(0)
∣∣∣2 at the

nucleus and the (integrated) amplitude of the capture process.∫
dLIPS is the Lorentz invariant phase space, andM the ma-

trix element of the Weak interaction process.
Any medium or mechanism that can significantly increase

the electron density at the nucleus will enhance the capture
rate, such as the molecular environment7 or an intense laser
field8.

3. Enhancement by Molecular Cages

7Be is the lightest element that E.C. has been observed in? .
In fact, there is so little energy that the competing β+ positron
emission process (described below) is prohibited, leading to a
fairly long E.C. half-life of τEC ∼ 50 days.

Being so light, and having such a large rate, electron cap-
ture in 7Be can be slightly modified by both changing the
chemical environment and/or the external pressure7,9,10. In
particular, in 2004, Ohtsuki et. al. demonstrated a change
of 0.83% by embedding Be in C-60 cages7.

How could such changes occur? The nuclear energy levels
are in the keV to MeV region, and it is generally thought to be
very difficult to impossible to effect. But the electron capture
rate is proportional to electronic density at the nucleus–the
nuclear charge. The electronic energy levels are in the eV
range, so intense EM fields can alter the electronic structure
and therefore slightly affect the E.C. rate.

4. Enhancement by Laser Confinement

It is well know that intense laser radiation can increase the
effective mass of an electron.

It is easy to see in the relativistic energy-momentum rela-
tion (pµpµ = m2

e , c = 1). in the presence of strong electro-
magnetic field. If we include the vector potential (Aµ , e = 1)
of the field in the momentum, we have

−(pµ − Aµ)(pµ − Aµ) = m2
e

Assuming the average field fluctuations are zero (Āµ = 0),
the effective mass includes the remaining fluctuations, leading
to the dressed relation
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p̃µ̃pµ = m2
e f f = m2

e + AµAµ

It has been suggested that the electron capture rate could be
enhanced by a factor of 2−3.5 using laser confinement8. They
propose that an intense, long wavelength laser could compress
the electronic wavefunction thereby acting like a photon-box,
increasing the electron density at the origin, and thereby dou-
bling or tripling the rate of E.C.

They derive an effective mass for an atomic electron using
a perturbative treatment of non-relativistic reduction of Dirac
equation (c = ~ = e = 1), giving

∣∣∣Ψe(0)
∣∣∣2 ∝ m3

e f f

where the effective mass is proportional to the laser inten-
sity I and inversely proportional to the energy Eγ

m3
e f f =

√
m2

e + 32πα
I

E2
γ

The experiment would require a laser intensity of I =

1010Wmm−2 and an energy Eγ = 10−3 − 10−4eV, or a wave-
length of λ = 0.01µm (much larger than an Angstrom).

5. Bare Electron Proton Capture and Stellar
Nucleosynthesis

At zero energy, bare proton electron capture is not possible
because it violates energy-momentum conservation. Theoret-
ically, a free proton could capture an electron from the con-
tinuum, but the interaction energy must be above the thresh-
old for neutron production. This is a huge amount of energy,
although this happens regularly in accelerators, and, presum-
ably, in stellar environments. Observing such capture outside
of an accelerator would be an incredibly hard experiment be-
cause both final particles are neutral, and the neutrino is ex-
tremely weakly interacting.

Bare capture is thought to occur in stellar nucleosynthesis
because the environment is very dense, and the system is in
thermal equilibrium. This drives the formation of primordial
elements, and occur when neutron stars form. At very high
temperatures, the proton electron collisions have sufficient en-
ergy to overcome the reaction barrier. For example, Bahcall
and coworkers famously computed the electron capture rate
of 7Be in the Sun11,12. It took nearly 40 years to resolve these
calculations, resulting in the 2002 Nobel prize in physics. It
is believed that ionized Hydrogen captures an electron during
the core collapse supernovae and in neutron stars [14].

While we usually characterize a star by it’s temperature,
these are also very dense systems, with ρ ∼ 106 g cm−3.
In contrast, crudely, the smallest star has density ρ ∼ 102 −

103 g cm−3. As important, the reverse reaction is prohib-
ited because, inside the dense neutron star, it is impossible to

create a new electron; the Fermi sea is full. So electron cap-
ture can occur by bare protons, but, presumably, only under
extreme confinement, and with the reverse reaction is sup-
pressed. And there are many studies of numerical rate cal-
culation in high thermal, stellar environments.

A complete calculation of the E.C. rate requires numerical
integration of the integrated capture amplitude including four-
momentum integrals for all reaction particles13. That is, one
need to consider the full expression for the rate (in terms of
the LIPS)

ΓEC =

∫
d3pp

(2π)3

∫
d3pe

(2π)3

∫
d3pn

(2π)3

∫
d3pν
(2π)3

∑
spin

|M2|

×δ(Ep + Ee + En + Eν)δ3(pp + pe − pn − pν)

We have found no treatment of confined electron capture
using the complete numerical methods like those employed in
dense astrophysical environments.

In this paper, we model the enhanced electron capture pro-
cess as a particle-in-a-box, but applied to the Femi VA theory,
and using the full numerical integration of the full relativistic
expression for the integrated capture amplitude.

B. The Weak Interaction and Femi VA theory

Electron capture is mediated by the Weak Interaction,
described most concisely by the Fermi VA (Vector Axial)
theory.2,3,14 The VA theory is a simple phenomenological ap-
proach, readily amenable to numerical calculations. It is now
understood in terms of ElectroWeak Unification and can be
derived from the Standard Model.

The original paper by Fermi, for which he won the 1938
Nobel Prize in Physics, was initially rejected by Nature be-
cause

It contained speculations too remote from reality to be of
interest to the reader.15

VA theory can be used to compute cross sections for scat-
tering experiments and decay rates for electron capture for
various atoms, even in different environments, chemical and
otherwise. We can use machinery of the VA theory to explore
E.C. in a simple, idealized environment. To properly describe
any reaction, however, we need to understand what reactions
we can apply the theory to, and the other, potential competing
reactions.

1. Electron Capture and other Semi-Leptonic Weak
processes

The Weak Interaction describes several related, semi-
leptonic processes (those involving both leptons and hadrons)
within a single framework16, including:

• orbital electron capture p+ + e− → n0 + νe
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• positon emission (β+ decay) p+ → n0 + e+ + νe

• β decay n0 → p+ + e− + ν̄e

There are also several related reactions, including

• reverse electron capture n0 + νe → p+ + e−

• free neutron decay n0 → p+ + e− + ν̄e

• inverse Beta decay p+ + ν̄e → n0 + e+

Let us briefly review these.

2. Beta decay

Beta (β−, or just β) decay is the most familiar Weak process,
and is discussed in great detail in numerous articles and texts.
In contrast, electron capture, which is can be significantly dif-
ficult to describe in detail, is a very rare topic. Indeed, the
most recent review is from 1976.2

3. Positron emission

In any high energy relativisitic process, there is the possi-
bility of positron emission. As noted above, however, in 7Be,
the competing positron decay reaction can not occur because
there is not enough energy. Also, positron emission occurs
at length scales below the (reduced) Compton length of the
electron, which, is smaller than we will need to consider.

4. Neutron Decay

By detailed balance, reverse electron capture has the same
rate as orbital electron capture–but is more favorable ener-
getically. Indeed, inside the nucleus, the neutron is rela-
tively stable. Free neutron decay has mean lifetime of τ =

881.5 ± 1.5 sec, or about 15 minutes.
In contrast, orbital electron capture by a free proton is

unspoken-of outside of a stellar environments. Even if the
bare reaction could proceed, the reverse reaction would still
dominate unless it is suppressed or is kinetically unfavorable.

5. Inverse Beta decay

Electron capture is also sometimes called inverse β decay,
but, here, we mean this to be the scattering of a proton and an
electron anti-neutrino ν̄e. It is characterized by emission of a
positron e+.

C. Higher order corrections

1. Orbital effects

Highly accurate rate calculations must treat the electronic
structure of the initial and final electronic states, and it is
strongly affected by their overlap. But when Hydrogen is
strongly confined, the atomic electron effectively detaches
from the proton, and effectively behaves like a particle-in-a-
box (depending on the shape of the box).17 So we do not need
to consider atomic orbital effects here, and this greatly simpli-
fies the analysis.

2. Radiative Electron Capture

The Weak Interaction, as presented here, does not include
higher order QED contributions. There are 2 dominant effects:
positron emission and internal Bremsstrahlung.5

In particular, in very rare cases, a gamma ray photon is
emitted with the neutrino; this is called Radiative Electron
Capture (REC).5,18–20 This can be thought of as a kind of In-
ternal Bremsstrahlung (or so-called braking) radiation, caused
by the electron accelerating toward the nucleus during cap-
ture, taking energy away from outbound neutrino.4 It tradi-
tionally has been treated as a second order QED correction to
the VA theory.5 REC is 1000X less likely, but does occur. The
resulting gamma (γ) rays are called soft because they do not
exhibit sharp spectral lines. Recent, detailed rate calculations
have elucidated the quantum mechanical details.20

II. CONFINEMENT INDUCED ELECTRON CAPTURE

We pose the following Gedankenexperiment: We imagine
some protons embedded in a lattice, such that we can say each
bare proton is confined in a Fermi sea of electrons. We model
this as a classical particle-in-a-box, with volume L3. We fur-
ther imagine that the box is transiently compressed, as in Fig-
ure 2, such that the box size L is just small enough to ’induce’
electron capture.

We write this as

Ebox + p+ + e− → n0 + νe

where Ebox represents a confinement energy, which is in-
duced by the box constraints.

After the electron capture event, the box contains a cold
neutron, with very little kinetic energy and a very small mean
free path. Also, as depicted in Figure 3, the box now wants
to expand because the ’walls’, which are effectively a Fermi
sea of electrons, are repelling each other and the stabilizing
positive charge is gone.

At this point, shown in Figure 4, we imagine the box has
effectively expanded, and the neutron can capture a nearby
proton, forming deuterium, and releasing of 2.2MeV of en-
ergy:
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FIG. 2. Confinement Induced Electron Capture: before

FIG. 3. Confinement Induced Electron Capture: after

n0 + p+ → d+ + 2.2MeV

We would like to understand if such a process is reasonably
possible and how to model both the rate of electron capture
and the maximum excess power such a process might produce.

Here, we examine what do detailed calculations look like

FIG. 4. Confinement Induced Electron Capture: after

that employ the full machinery of the Weak Interaction, as an
illustrative exercise.

Before we describe the theoretical approach, we address a
few conceptual issues in setting up the problem.

1. Compton length

The first obvious question is, should we use a classical or a
relativisitic box?

Most electron capture rate calculations use ab initio clas-
sical wavefunctions,2,3 perhaps with some relativisitic correc-
tions to the electronic Hamiltonian.21

We argue that we can safely use a classical box as long
as Lmin ≥

1
2πλe, where λe is Compton wavelength of an

electron.22–24 The Compton wavelength sets the scale, ac-
counting for both quantum mechanics and special relativity.

λe =
h

mec
=

e2

mec2

λe ≈ 2.426 × 10−12 m

Note, however, for relativisitic calculations, one uses the
reduced Compton wavelength

oe =
λe

2π
≈ 0.4 × 10−12m

.
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Thus, for an electron, the minimum L is on the order of
0.004 Angstrom

Lmin ∼ 0.004 Å

In any high energy, relativisitic system, positrons can be
produced; here it is through β+-decay. This generally occurs
at or below the reduced Compton length. We are seeking the
maximum box size which can induce electron capture, and we
assume that, at the maximum, positron emission will be very
rare.

If the box is extremely small, and the energy of the electron
is of the order of a W boson, we are no longer in the low
momentum limit and one would need to consider higher order
corrections to the Weak interaction.25

We also assume that the electron wavefunction does not
change appreciably during the interaction, so that we may use
a very simplified form for the cross section (σ) and rate (Γ).
Again, this is reasonable for boxes L ≥ λe.

2. Confined Atomic systems

Usually electron capture is described using the atomic or-
bitals of the parent and daughter nuclei.2,3 This is very com-
plicated and the basic physical insight can be lost in the details
of various angular momentum selection rules and orbital over-
lap calculations. Moreover, when an H atom is confined, the
electron will detach from the proton and behave like a free
particle in a box.17

3. Pair Production

We do recognize, however, that in typical cage or other con-
fined environment, there would be significant thermal effects
that may induce positron emission. Indeed, the electron en-
ergy needs to be very fine-tuned in order to allow capture but
not pair creation. In the box with multiple electrons, any fine-
tuning would be overcome by electron-electron collisions,
which would induce energy fluctuations that could drive pair
production. For example, at high density, assuming a thermal
distribution, if there are 800 keV electrons, there would be
some 1 MeV electrons, which are enough to cause significant
pair creation, probably faster than electron capture.

Here, we assume that the confinement is a highly transient,
far-from-equilibrium process, and that we can ignore pair pro-
duction from both thermal noise and electron-electron scatter-
ing.

4. Klein Paradox

Klein noted that a relativistic (Dirac) particle-in-a-box will
leak out at box sizes near, or above, the Compton wavelength–
this called the Klein paradox.25,26 And while this is usually
taught as being simply particle-antiparticle creation, it has
been suggested that the Klein paradox can occur even at larger

FIG. 5. EC particle production process

boxes sizes, and it is a general phenomena of confined rela-
tivistic particles. Recent experiments on Graphene have re-
opened the debate27. Still, we will assume the traditional in-
terpretation and we will ignore the Klein paradox.

So we use a classical box, with minimum size Lmin =

0.004 Å. We compute the maximum size below.

5. Neutron post-reaction

To prevent the reverse reaction, we assume that, in the ex-
panded box, the free neutron subsequently combines with an-
other proton, and gives us 2.2 MeV of energy in the process.
This post-process contributes to the power output. Realisti-
cally, we expect this to happen at the maximum box size, at
the energy threshold, where the outbound neutron has extraor-
dinary low momentum and therefore a very small mean free
path.

Still, for illustrative purposes, we will compute the power
output, assuming this post-reaction, at all box sizes.

III. THEORY AND CALCULATIONS

The electron capture rate can be computed using the Fermi
VA theory,2,3.

A. Particle production under the Weak Interaction

Electron capture is mediated by the Weak Interaction,
through the particle production process, given by the 4-point
Interaction (see Figure 5). It requires at least 782 KeV energy
to overcome the reaction barrier, which, here, is provided by
the box.

782KeV + p+ + e− → n0 + νe

We want to compute the rate of E.C. and the (minimum)
power generated, as a function of the box size (L), using the
full Weak Interaction Hamiltonian. We will compute the elec-
tronic density classically, using box wavefunctions, and, for



7

each box size, determine the incident velocity (as the momen-
tum). We then compute the cross section using the full rela-
tivistic kinematics and Dirac spinors.

To do this, we need to express the rate in terms of the rel-
ativistic differential cross section, and in a form suitable for
numerical calculations. But first, we want to motivate why we
use such a complicated form of the cross section.

B. Electron Capture Rates

Orbital electron capture and other Beta decay processes fol-
low first order kinetics, so the capture rate is described by a
single number. To calculate the rate, we require a full rel-
ativistic, quantum mechanical treatment because the capture
process involves both creating particles and the kinetic energy
spectrum is of order mec2.

The VA theory is based on second order perturbation the-
ory. It assumes an incoherent nuclear process, it is local, and
that the interaction is phenomenological. It is treated as sim-
ply a contact potential at the nucleus. Here, this means we
need to compute the nuclear charge–the electron density at
the the nucleus ‖ψe(R = 0)‖, which we obtain from a classical
particle-in-the-box wavefunction.

The orbital electron capture rate ΓEC can be written by mul-
tiplying the cross section σEC by the incident velocity vin

ep and

(orbital) electron density
∣∣∣Ψe(0)

∣∣∣2 at the origin

ΓEC =
∣∣∣Ψe(0)

∣∣∣2vin
epσEC .

Of course, this velocity is not relativistic28. And that is fine
for typical calculations.

For example, for something like 7Be confined in a cage,
we assume that vin

ep and σEC are not changing much, and we
can estimate the ’cage’ rate by n computing the ratio of the
confined to uncaged classical molecular electronic densities.

Γ
cage
EC ∼

|Ψ
cage
e (0)|2

|Ψ
f ree
e (0)|2

Γ
f ree
EC

And in many other cases, we can just estimate the cross
section within a order of magnitude, without worrying about
the kinematics.

C. Relativistic Cross Sections

In our Gedankenexperiment, however, we imagine that the
box induces capture, we are at least in the regime of relativis-
tic kinematics. To that end, we use a semi-classical, numerical
method to describe the electron-capture cross section and per-
form the rate calculations. Using the Lorentz Invariant (LI)
scattering cross section for a relativistic (1 + 2 → 3 + 4) re-
action. The most basic calculations require only specifying
the electronic wavefunctions(s), averaging over the possible
electron-proton momenta, and numerically integrating over
the outbound neutrino momentum.

We could also describe the proton-neutron capture this way,
but, for simplicity, we will simply assume the cross section for
the post reaction is maximally large, and we ignore the kine-
matics. We provide the equivalent expression for the proton-
neutron capture cross section in the appendix.

More complicated calculations are used for larger nuclei,
second order processes, etc. They only require modifications
to treat either atomic electronic structure of reactant and prod-
uct atoms, and/or specific considerations for nuclear internal
conversion and other second order processes.

We write the Lorentz Invariant (LI) differential cross sec-
tion in the C.M. frame as

dσEC =(
1

2π

)2 ∑
f i

∣∣∣M f i

∣∣∣2
16

∣∣∣k · (Enk − k0pn)
∣∣∣ k3 pedΩk∣∣∣pe · (Eppe − Eepe)

∣∣∣ (1)

where M f i is a matrix element of the Weak Interaction
Hamiltonian, k represents the neutrino momentum compo-
nents (k0,k) = (Eν,k) = p4

ν , and we use natural units (~ =

1, c = 1).
This can be readily derived from the standard LI differential

cross section for a relativistic (1+2→ 3+4) elastic scattering
reaction in the C.M. frame. It is not commonly used in the
literature and it is this form that allows us to perform detailed
numerical rate calculations.

1. Rate

This gives the (differential) rate as

dΓEC =(
1

2π

)2 ∑
f i

∣∣∣M f i

[
pep → i∇)

]
ψep(x)

∣∣∣
x=0

∣∣∣2
16EpEe

∣∣∣k · (Enk − k0pn)
∣∣∣ k3dΩk (2)

where we explicitly specify the electronic wavefunction.
We represent the (e−, p+) pair using a 3D box wavefunction,

and obtain the Energies and 3-momenta from the relativistic
kinematics.

As usual, we average over the initial spins, and sum over
the final spins. That is, we average over all 8 permutations of
the incident velocities (really momenta pep) for the 3D box,
and integrate over outbound neutrino solid angle dΩk using
numerical quadrature. The final rate is computed as, for each
box size, as a function the kinematics, using

ΓEC =
1
8

∑
ppe

∫
dΩk

dΓEC

where
∣∣∣pep

∣∣∣ is given by the box size (described below).



8

2. Power

We estimate the excess power generated by the confined
electron capture, resulting if/when the outbound neutron re-
acts with the environment. The power P is

P = ΓEC ∗ Q ∗ ρ

where is the nuclear decay energy, or Q-value, and ρ is the
density of confined elements.

We don’t actually know ρ, and as a placeholder we can
choose the density to that of a typical material, of order Avo-
gadro’s number, NA ∼ 6.02 × 1023. We will be examining
power ratios, so this choice is irrelevant.

We estimate the power for both the bare proton-electron
capture

Ppe = ΓEC ∗
[
(Ee − me) + (Ep − Mp)

]
∗ ρ

and the subsequent neutron post-reaction

Pn = ΓEC ∗ [2.2 + (En − Mn)] ∗ ρ

.
assuming that the post-reaction has maximal efficiency. We

then define an excess maximum power as

PXS = Ppe − Pn

which we argue is a good measure of the gross maximum
potential reactive power output of the confined E.C. process.

Of course, if the outbound neutron has any considerable
velocity vn, the proton-neutron cross-section σp+n would be
very small. The proton-neutron cross section scales inversely
with the velocity (σp+n ∼

1
vn

). In principle, we could also
compute this cross section using the Weak Interaction and the
relativistic kinematics, as we did for electron capture.

But we are only interested in box lengths where the excess
power is significant enough to drive the reaction, where the
outbound neutron is moving very slow, or is ulta cold. This is,
of course, when the box is very large.

3. Particle-in-the-box Wavefunctions

While most electron capture calculations assume a specific,
bound, atomic electronic wavefunction(s), we perform a much
simpler calculation; we treat the electron-proton pair as clas-
sical particle-in-a-box, and analyze the problem just above
the Compton scale using the low order VA theory. Write the
wavefunction as

ψep(x) =

(
2
L

) 3
2

cos
(
πx
L

)
cos

(
πy
L

)
cos

(
πz
L

)

.
Because the VA theory assumes an incoherent process, the

electron, proton wavefunction is usually factored as an elec-
tron wavefunction, with a point-particle in the center

ψep(x) = ψp(0)ψe(x)

We only consider the ground state ψ0
ep wavefunction.

We note, in ab initio electronic structure calculations, it is
now generally possible to treat the Hydrogen proton wave-
function explicitly, and to treat the electron-proton coupling
at the level of Hartree Fock21. This has proved useful, for ex-
ample, for describing isotope effects on electronic structure.
It may also be possible to eventually treat this problem using
fully relativistic ab initio QFT methods, although this has only
been applied to positronium so far29.

Here, we treat the confined electron, proton pair in the C.M.
frame so that the 3-momentum of the electron and proton are
related as

pe = ppe

pp = −ppe

and we consider all 8 permutations for each given box size
L:

±ppe(1),±ppe(1),±ppe(3)

4. Relativistic Kinematics and Energetics

For consistency with the particle production process, we
treat all kinematics and energetics relativistically. Given
energy-momentum conservation

E2 = m2 + p2

and the 3D particle-in-the-box energy ground state energy

Egs =
3π2

2mL2 ,

we use E =
p2

2m
to write

E2
e = m2

e + 3
(
π

L

)2
,

and

E2
p = M2

p + 3
(
π

L

)2
.

The threshold Kinetic energy in the center of momentum
(C.M.) frame is given as
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EKemin : Ke = Ee − me =
(Mn − me + mν)2 − M2

p

2(Mn + mν)

which is approximately 781.6 KeV (or 783.1 KeV in the
proton rest frame).

Of course, the proton rest frame is approximately the elec-
tron rest frame, but it should be mentioned that the in the elec-
tron rest frame, the threshold kinetic energy is 2000X greater.
Therefore, it is assumed that the energy transfer to induce
electron capture is in the C.M. frame of the (e,p) pair.

The minimum momentum is

pmin =

√
(Ke + me)2 − m2

e .

For the final state, the neutrino (ν) kinetic energy is

Kν = k0 − mν =
(Ep + Ee − mν)2 − M2

n

2(Ep + Ee)

and the neutron (n) kinetic energy is

Kn = En − Mn =
(Ep + Ee − Mn)2 − m2

ν

2(Ep + Ee)

At this point, we can compute the relativistic energies for all
particles, simply as a function of box length (L), for a confined
(e−, p+) pair. Of interest is the shape of the curve, and when
the excess power output becomes favorable.

To compute the exact rate and estimate the power, we need
to evaluate the matrix element(s) of the Weak Interaction
Hamiltonian. While most practitioners simply estimate this,
for our purpose, we can simply compute them exactly.

D. Weak Interaction Hamiltonian and Matrix Elements

The Hamiltonian for the VA theory for E.C. is2,3,16?

H(x) = −
G
√

2

[
Jµ(x)L+

µ (x) + h.c.
]

where Jµ and Lµ are (in modern parlance) the Hadron and
Lepton currents, resp, un, up, ue, uν are Dirac (free-particle)
spinor wavefunctions, and h.c. stands for the Hermitian con-
jugate.

The term G = GFcosθC , where GF is the Universal
Fermi Weak Coupling Constant, and θC is the Cabibbo angle
(sinθC = 0.231).

Notice that we are only interested in semi-leptonic pro-
cesses, governed by weak changing currents, and only leptons
are electrons.

1. VA Matrix Elements

The matrix elementsM f i ofH(x) are given by30.

M f i =
GF
√

2
ū(pn, sn)(GV −GAγ

5)γµu(pp, sp)

× ū(pν, sν)γu(1 − γ5)u(pe, se) + h.c. (3)

where u(p, s) are Dirac 4-spinors, with the convention

u(p, s = 1) =
√

E + m


1
0
p3

E+m
p1+ip2
E+m



u(p, s = 2) =
√

E + m


0
1

p1−ip2
E+mp3
E+m


〈ū|u〉 = ū0u0 − ū1u1 − ū2u2 − ū3u3

and ū = u†γ0. The γ are 4-component Gamma matrices,
and (· · · γµ · · · γu · · · ) is the Einstein summation convention.

The term GV is the Axial-Vector Weak Coupling Constant,
and GA is the vector weak coupling constant. The most recent
value is GV = 1.2767(16), and GA = 131.

Recall that the VA theory assumes that the electron-proton
interaction is a contact potential, operating at the center of the
nucleus, and that the underlying quantum process is incoher-
ent. We need simply compute the matrix elements in terms of
the terms of the individual Hadronic and Leptonic currents

Jhad = ū(pn, sn)(GV −GAγ
5)γµu(pp, sp)

Llep = ū(pν, sν)γu(1 − γ5)u(pe, se)

.

2. Sum over spin combinations

Like free neutron decay, on that the total rate for the bare
proton-electron capture (being the reverse reaction) is super-
allowed, so it will have both Fermi and Gamow-Teller type
transitions.

These are, of course, different from standard Beta decay
since we need to consider the total angular momentum of the
initial (p+ + e−) and final (n0 + ν̄e) states. Here, we identify
the allowed (Singlet-like) and disallowed (Triplet-like) transi-
tions, as well as some very low order disallowed contributions.

Here, by Singlet-like states, we mean total spin 0, and by
Triplet-like, we mean total spin 1 or −1. Here we find that
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states of total spin 0 (hadronic and leptonic) have the same
order of magnitude. Since we are using particle-in-the-box
electronic wave functions, we do not consider orbital angular
momentum, and therefore only have to consider if sp = se or
sn = sν. Notice, however, we use the Dirac-spinor convention
for s = 1 (up) and s = 2 (down), so total s = 0 corresponds to
(up, down) or (down, up), etc.

We sum over the 16 allowed transitions in the VA theory.
We observe four dominant (allowed) spin combinations, con-
sisting of Singlet-like initial and final states, which is of order
50 (in natural units)

sp , se; sn , sν

ū(pn, 1)u(pp, 1) ū(pν, 2)u(pe, 2)

ū(pn, 2)u(pp, 2) ū(pν, 1)u(pe, 1)

,

ū(pn, 2)u(pp, 1) ū(pν, 1)u(pe, 2)

ū(pn, 1)u(pp, 2) ū(pν, 2)u(pe, 1)

.
There are two weaker (dis-allowed) combinations, where

are all spins are the same (Triplet-like states), and are of order
10−1 (that is, 10−3 smaller in magnitude)

sn = sp = sν = se

ū(pn, 1)u(pp, 1) ū(pν, 1)u(pe, 1)

ū(pn, 2)u(pp, 2) ū(pν, 2)u(pe, 2)

.
There are four remaining, non-zero contributions, consist-

ing of a single spin flip in the initial or final state, and is of
order 10−3 in magnitude

sp , se or sn , sν

ū(pn, 1)u(pp, 1) ū(pν, 1)u(pe, 2)

ū(pn, 2)u(pp, 2) ū(pν, 2)u(pe, 1)

.

ū(pn, 2)u(pp, 1) ū(pν, 2)u(pe, 2)

ū(pn, 1)u(pp, 2) ū(pν, 1)u(pe, 1)

The remaining (single and double flip) transitions have zero
amplitude.

E. Numerical Calculations

We outline the calculations in pseudocode below.
The full calculations sums of over all 8 possible incident

momenta permutations (±pep(1),±pep(2),±pep(3)), and the
16 allowed spin transitions (see figure below). By conserva-
tion of momenta, we can eliminate the neutron and only need
to average over the outbound neutrino momenta solid angle
(dΩk); we do this using an 8-point gaussian quadrature.

Let us write the Real part of the current density as

C2
Re = Re(C̄2

ampC2
amp)

where

C2
amp = (Jhad)µ(Llep)µ =

J0
hadL0

lep − J1
hadC1

lep − J2
hadL2

lep − J3
hadL3

lep (4)

We express the rate as

ΓEC = C2
Re(F )

in terms of an intermediate factor

F = rc

( pep

2π

)3
 G2

F(E2
ν − m2

ν)
3

512π2 EpEe~c
∣∣∣ k(En pν − Eνpn)

∣∣∣
 (5)

We write the two power terms as

P1 = Ppe = C2
Re

[
(Ee − me) + (Ep − Mp)

]
(F )

P2 = Pn = C2
Re [2.2 + (En − Mn)] (F )

and compute these as a function of the box size using the
relativistic kinematic and Weak Interaction matrix elements.
We are interested in the estimated neutron output power ratio

power ratio :
Pn

Pep

as a function of box length L.

F. Results

Figure 6 presents the results of relativistic kinematics and
estimated maximum excess power as a function of box length
L. For illustrative purposes, we include results box sizes even
way below the Compton length L = 0.004Å.

Notice that the kinetic energy of the proton and the electron
neutrino approaches zero very rapidly, and the excess power
ratio is greater than unity for L > 0.004Å, with a maximum of
almost a factor of 3.
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Algorithm 1 Rate and Power Calculations
1: for pep ∈ [pmax, pmin] do . pep = ‖pep(L)‖
2: Tran(pep) = 0 . Transfer
3: Powern(pep) = 0 . Neutron Power
4: for wx,wφ ∈ Q[1, 8] do . quadrature weights
5: for sn, sp, sν, se ∈ [0, 1] do . sup, sdown = 0, 1
6: for sx, sy, sz ∈ [−1, 1] do . pep = pep[sx, sy, sz]
7: pn, pp, pν, pe,← pekin(wx,wφ,pep) . 4 vectors← rel. kinematics
8: ū(pn, sn), u(pp, sp), ū(pν, sν), u(pe, se) . spinors by p, s-index
9: for u ∈ [1, 4] do . 4-vector indices

10: Jhad = ū(pn, sn) · (GV −GAγ
5) · γµ · u(pp, sp) . Hadronic current

11: Llep = ū(pν, sν) · γu · (1 − γ5) · u(pe, se) . Leptonic current
12: C = 〈L†lep, Jhad〉 . Current Amplitude

13: F 2(pep, pp, pe, pn, pν) . Matrix Element Factor
14: Tran(pep)+ = wxwφRe[C†C]F 2 . Integrated Rate
15: Pn(pep) = Tran(pep) ∗ (2.2 + (En − Mn)) . Neutron Power estimate

FIG. 6. Kinetic Energy and Power as a function of Box Length

More realistically, Figure 7 shows both the relativistic kine-
matics and the excess power in the regime just below the max-
imum box size.

These simple calculations indicate that a confined electron
capture reaction would be favorable as long as the produced
neutrons react with environment at a high rate. This is ex-
pected at the maximum box size, where the neutron has the
smallest mean free path.

IV. DISCUSSION

We present calculations for a Gedankenexperiment describ-
ing confined orbital electron capture of a bare proton and an
electron in a box

Ebox + p+ + e− → n0 + νe

The intent is to model, conceptually, a confined proton,
trapped in a field of free electrons, such that the kinetic energy
of the proton is high enough to induce electron capture. We
treat system as an electon-proton pair in a classical particle-
in-the-box, and compute the capture rate using the Fermi VA
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FIG. 7. Kinetic Energy Zoomed In (to replace)

theory. We use classical box wavefunctions to express the
confinement, and compute relativistic proton momentum and
kinetic energy resulting from the box. We then compute the
rate by evaluating the Weak Interaction Hamiltonian matrix
elements using the box wavefunction density at the origin,
using a form of the Lorentz Invariant differential cross sec-
tion that takes into account the full relativistic Kinematics of
(1 + 2→ 3 + 4) elastic scattering nuclear reactions. We com-
pute the power generated by the E.C. process, as well as esti-
mate the minimum excess power generated by neutron cap-
ture, as a function of box size L. We find that the excess
power ratio is greater than one for box sizes L > 0.004Å,
and increases rapidly as we approach the maximum box size
L > 0.009Å. We note we need a compression ratio of order
50X to induce capture.

While being pedagogic exercise, we would also like to dis-
cuss both directions for future work and a possible applica-
tion.

A. Low energy electron-proton scattering resonances

We treat the electron-proton pair as if they are bound by the
box potential; that is, we assume the box exists. We would
like to observe a bound state directly, but describing bound
states in relativistic field theory is a complex problem. Indeed,
Steven Weinberg has stated32:

It must be said that the theory of relativistic effects and ra-
diative corrections in bound states is not yet in satisfactory
shape.

Ideally we would look for resonances, or quasi-bound
states, in solutions of the Bethe Salpeter equation, or a re-
lated formulation of the relativistic two-body equations, for
electron-proton scattering. This is significantly more compli-
cated, requires some choice of approximation, and is prone
to singularities that can lead to numerical instabilities. Still,
there is some older work that suggests this may be successful.

In 1991, Spence and Vary claimed to have observed several
(5) narrow, low energy, near threshold continuum resonances
in numerical solutions of the Blankenbeckler-Sugar equation,
a specific, relativistic (but not Gauge invariant) reduction of
the two-body Bethe-Salpeter equation into a one-body equa-
tion. Their results suggested there could be short lived, quasi-
bound electron-proton states up to 100 fm (0.001Å) in extent.
This is of order the box sizes we have investigated, and it
would be very interesting to continue our study of confined
electron capture using modern techniques.

The best, modern, relativistic ab initio techniques so far,
also by Vary, have successfully treated positronium,29 and it
would be interesting to try to extend such methods to electron-
proton scattering. This is significantly more difficult since
most ab initio many body methods can treat ground states,
but to find quasi-bound states requires a powerful open shell
method.
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B. Confinement-induced Nuclear Fusion in the Earth’s
Inner Core

We briefly mention a recent proposal for another type of
confinement-induced nuclear reaction, namely, nuclear fusion
at the Earth’s core.

The source of heat from the Earth’s crust remains contro-
versial, although heat flow to the surfaces seemingly arises
from both primordial and radiogenic sources. Moreover, sig-
natures of antineutrinos have been detected emanating from
the core. Recently (2016), Fukuhara proposed that the ob-
served heat and geoneutrinos result from a three-body nuclear
fusion of deuterons.33 They argue that the reaction occurs in D
atoms confined in hexagonal FeDx crystals, at high pressure
and temperature. Moreover, the D+D+D collision is mod-
ulated by a charge density wave instability which causes a
breathing-mode-like displacement of the deuterons.

It is noted that the confinement is estimated to be 37% of
equilibrium lattice constant, of order a Bohr radius (0.5Å).
This is significantly larger than the L values here, although fu-
sion requires a significantly smaller level of confinement than
electron capture. And we do not consider temperature or pres-
sure effects in our model, which Fukuhara estimates includes
another 50% confinement in this model.
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